Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

UNITED STATES DEPARTMENT OF AGRICULTURE
Agricultural Research Administration
Bureau of Plant Industry, Soils and Agricultural Engineering

NOT FOR PUBLICATION
H. T. \& S. Office Report No. 208

Heater Test With Apples - Wenatchee, Washington
To Chicago, Illinois - February 1949

By
W. H. Redit, Mechanical Engineer
T. R. Wright, Associate Pathologist

Division of Fruit and Vegetable Crops and Diseases

April 26, 1949
Belteville, Maryland

Heater Test With Apples－Weatchee，Washington To Chicago，Illinois－February 1949

Object of Test

The refrigerator car heater that were tested during the winter of 1946－7 and 1947－8 were of the portable trpe installed in the bunkers of standard 40 ft 。end bunker cars，with and whout air circulating fanso These tests demonstrated the value of forced air circulation in obtaining a unlform distribution of heat throughout the load when such heaters are installed in one or both ends of the car．During the past vear，the Burlington Refrigerator Express Company has adapted the permanently installed Laminator－Mitchell underslung charcoal heater（extensivelv used bv the Canadian roads）to two tupes of its cars，an overhead bunker and a regular end bunker fan car．Also，a mechanical refrigeration and heating unit， originall designed and used in refrigerated trucke was installed in a refrigerator car by the Western Fruit Express Compant and was available for test at the samn timeo

Therefore，as both switem appeared to give promise of improved heater service in the movement of apoles and pears from the Northwest the car lines requested the Department to cooperate in conducting this test to obtain information on their performance even though it was verv late in the season when the equipment became available．In order to compare them with currentlo avallable heater and car equipment，four additional cars were $u c e d$ ．The test，therefore，included thermostaticall．controlled alconol and charcoal heaters and non－controlled charcoal heaters in ian cars and standard charcoal heaters in a non－fan car in eddition to those with the underslung charcoal heaters and the on with the mechanical unit。

Sumary of Result

Although the sever winter veather continued almost uatil the time of departure of the test，it was followed by such mild weather in transit that no heaters vere lit except the pllots of the Preco heaters and the Luminator－Yitchell heater in car C which was operated under Canadian rulen（bottom air temperatures）。 The Thermoming unite were operated throughout the transit period，shifting from heating to refrigeration as the outside temperature varied．Their operation under these mild con－ ditions was satisfactor with a verv close and uniform control of commodit temperatures．While the Preco heaters were on pilot onlo，there vas a gradual rise in average comnodity temperatures due to the heat from the pilots．Satisfactory temperatures were obtained in the car equipped with the Luminatormitchell heater after it was lit．Operation of the heat exchanger also appeared setis afactory．In general，the fap cars showed a more uniform comodite temperature throughout the test than the two non－ fancars，with a emaller temperature spread between top and bottom frult。

Equipment Tested

The cars used and the heaters tested are listed below followed by a complete description of each heater and its installation:

Code No.	Car No.	Type Car	Heater	Type Heater
A	WFEX 67564	Standard	Thermo-K1ng	Mechanical
B	FGEX 40.000	Fan	Luminator-Mitchell (sylphon valve)	Char coal
C	BREX 74699	Overhead bunker	Luminator-Mitchell (sylphon valve)	Charcoal
D	BRICX 74698	Fan	Inminator-iditehell (manual control)	Charcoal
\pm	FGRX 56292	Pan	Preco	Al cohol
I	FGEX 57676	Fan	Stmplex Thermo.	Charcoal
G	FGEX 56297	Fan	Simplex Standard	Charcoal
H	PGRX 57545	Nor-fan	Simplex Standard	Charcoal

Thersio-King

The Thermo-King model RY refrigerating and heating system consists of two completely self-contained units installed in one end of a standard car, the compartment containing the units being separated from the loading space by an insulated bulkhead. Rach unit is mounted on a file-drawer type of base and may be pulled completely outside the car for quick removal or replacement. Access to the units is achieved by raising a sliding panel operated by a removable cranic which simultaneously unlocks the unfts for withdrawal. Only three simple connections, fuel, battery and controls, mast be broken to remove a unit. A built-in flae above each unit carries off the exhaust gases from the engine and the heat from the radiator and condenser.

The compressor is directly driven by 24 cylinder gasoline engine which is fully automatic in operation. A starter-generator, built as a compound unit directly mounted on the crankshaft replaces the conventional flywheel. The engine develops aporoximately 16 H. P. at 2500 RPM and has an automatic choke, engine unloading devioe, and thermostatic control to prevent freezing。 The unit features a reverse cycle heating system whereby heating as well as cooling is provided. Controls are so arranged that one or both units automatically provide either heating or refrigeration in accordance with thermostat setting and load condition. One unit only will operate under normal conditions but if the load should increase beyond its capacity the other unit will automatically cut in. Other features of the refrigeration system include automatic defrosting of the evaporator by a clock-type mechanism and humidity control through prevention of excessively low evaporator coll temperatures.

Forced air circulation in the car is provided by means of a fan located at the top of the cooling coll of each unit which forces air out Into the loading sipace by means of a duct extending along the ceiling sbout $2 / 3$ the length of the car. The end of the duct is open to provide air movement to the far end of the car. Openings along the sides of the duct permit the air to move laterally to the sides and down behind the wall racks to the space under the floor racks from whence it is drawn back into the unite through a flue on the bulkhead next to the engine compartment. The thermostat bulb is placed in the path of the return air in this flue. An electrically driven auxiliary fan is installed in the air duct above the regular fans end is controlled to operate when the regular units are shut down. In this way a constant forced air circalation is maintained, thereby providing closer control by the thermostat. The batteries and fual tank are mounted under the car. Bach unit weigh slightly under 1000 pounds with the total weight of the two units, ducts, tanks, fuel and batteries approximately 3500 lbs.

Luminator-Mitchell Underslung Heater

This charcoal heater is permanently located in a position under the floor at the doorway where it is readily accessible from the ground for servicing and control. The heater contains a heating coil in the firebox which is connected to a single pipe coil located under the floor racks and extending around the car about $12^{\prime \prime}$ away from the wall. In the fan cars the pipe does not extend beyond the fan housing but crosses to the opposite side about 12 inches from it. As the liquid (Prestone) is heated it circulates through the coll and returas to the heater for re-warming. In cars B (FGE 40,000) and C (BRE 74699), this flow of warm liquid is regulated by a thermostatically controlled valve whose bulb is located under the floor racks adjacent to the liquidometer bottom bulb. The air temperature desired is obtained by appropriate setting of the thermostat. Both of these cars are equipped with a heat exchanger located under the car, for dissipating the heat when the thermostat valve has shut off circulation through the coll in the car, thereby preventing overheating the fluid in the heater. In car D ($B R R$ 74698), manual control is effected by manipulating the draft dampers of the heater in accordance with the air temperatures inside the car as indicated by the Iiquidometer. 'In all heater installations the burning rate is controlled by the adjustable damper which has eight positions. Then heat is no longer desired the demper is set at 0 , or completely closed.

Preco Thermostatically Controlled Alcohol Heater

This heater, described in detall in previous reports, is of the wick type with control effected by means of a thermostatically operated snuffer plate which covers the olck. On previons models, the snuffer operated by a snap action from off to full burning. The snuffer of the current production model has a modulating action in that it rises gradually to full-on position or to closed (or pilot).

[^0]This heater, also previously tested and described, is a standard one piece charcoal heater with a thermastatically controlled damur which when in the off or closed position, reduces the burning rate to less than one half of the full burning rate. One of the two heaters included in the test was unae lareelir of aluminum wrich reduced its weitht ky approximately ao lye.

Standari Charcoal feator

Regular one plece heater currently in regalar use.

Test Cars

The tipes of cars used are listed below together with their general characteristics:

Car No.	Type	Insulation	Hit. Floor racks	Sidewall Flues or racks	Sheathine
a-metyer	Special-ton-fan	4-U-l/e"	4-3/4"	1-1T" Feck	W०on
E - PGE 40,000	Fan	3-1/2-4"	7-1/2"	1" Hlues	Aluminum
C - bre 74699	Overhead bunker	3-3-1/2"	6	$1^{\prime \prime}$ Hues	Steel
D - BRE 74638	Fan	$3-3-1 / 2^{\prime \prime}$	7-1/4"	None	Steel
E - FGE 56292	Fan	$3-3-1 / 2^{\prime \prime}$	7-1/2"	None	Wood
F - IGE 57676	Fan	$3-3-1 / 2^{\prime \prime}$	6-1/2"	None	rood
G - PGE 55297	Fan	$3-3-1 / 2^{\prime \prime}$	7-1/2"	None	Wood
H - PGE 57545	Non-fan	$3-3-1 / 2^{\prime \prime}$	4-1/2 ${ }^{\text {H }}$	None	Wood

Sar A was newly rebuilt with the Thermo-King units installed during the rebilldine. Both units wore installed in the A and in an insulated metal lined compartment. There was no bunker in the B end and no hatch opening. Tho ventilator openings were provided instead of regular hatches over the engise compartment. The elimination of the one bunker gave a loading pace 331 11" in length or about $8^{\prime \prime}$ more than in the regular 40 foot end bunker car. On the bulkhead next to the engine compartment, the wall rack slats were fastened to ? $\times 4$'s on edge to provide a llue for the return air. This end was covered with sheet metal from the top of the floor racks so that all return air would be drawn from under the floor racks up to the intake openings situated about 5 ft . abve the floor. Bottom openings originally provided in the discinarge air duct along the ceiling ware closed to prevent a direct blast on the top of the load and to increase the air movement laterally to the sider of the load.

In the three cers with the underslung heaters (B, C, and D), the opening between the floor rack slats directly above the pipe coll on the floor were plaged ($5^{\prime \prime}$ each way from the pipe) to prevent possible overneating of the comodity placed directly over the pipe.

Car B was built in 1947 and has been ia regular service since that tise. Jars a to H are recent rebullds tast nave ben in service. Jars C and D were equipped witn Liquidometers and Dar B wita thermal bilsters for indicating top ani bottom air temperature inside the cars.

1) Comprehensive Report on Heater Tests issued July, 1948 (AAR-USUA Teste 22. 23. 24, 25, 26 and 27)

Commodity Temperatures

Sommodity and air temperotures were read by me:ns of detant ranilne resistance thermoneter placed in the air or in frift in bores at the following positions:

Designation

BBYS-Z.	BEMS E
TBCL-H,	TBCL-R
BQCL-H	
TQCL-H,	TGCL-R
TDCL	
BDNS-H,	BDITS-R

Frait temperatures ware taken ty inserilne a resistance trermoneter baib into an apple in the top or bottom outside layer it a box. Two positio:es were used at tae botton doorway north side, one over tae inlet end of the pipe coll (rear) and one over the outlot end (negd) in order to deteralife the effecte of the drop in temperature from one end of the coll to the other in the cars equipped with underslung heaters. In order to make coimparisons between average comolity temperatares in all the care thespositions were also used in the cers not so eouloped. Wie thermozeters for simulating 11 quillometer or tlister air temperatares were plazed adjacent to the liquidometer or blister position. Here again, this cosition was used in all cars whetrer so equipped or ant. Cop air position was $l^{\prime \prime}$ below the celling, centerline of the car at the doorway and the botton position was under the floor rack, near the centerline at the doorway. The bottom blister position was simulated by placing the thermometer near the doorpost $1^{\prime \prime}$ above the floor rack and $i^{\prime \prime}$ from the wall. Special single drops ware used to obtain the air temerature in the bunker at the thermostat of eacn Preco heater in jar a. Commodity and air temperatures were read at terminals add otaer stops en roite

A Ryan recordine therameter was placed under the flyor rack in each of the undersiang heater cars and the Fhermo-iling car. In the latter car others wre placed next to the air duct at the colling and under the floor rack at the end next to the units and next to the air duct at the celling at the doorway. In addition, a Fyan was placed over each Preco heater to record full burner operation.

Test Procedure and Loading

The installation of the wifts in the Thermo-ring car was completeit at the WFE shops in St. Paul just prior to the test so the car was moves westward with the business car and the factory enflneers in order to make final running tests and adjastments. Upon errival at semetchee, the sheet metal coverine over the buiknead between loeding and entine ε_{i} ace was installed. Tais together with repairs necessary to stop e leak in one of the underslung heater cars delayed loading one day.

The cars vere loaded at Wenstchee and nearbs points on February z^{4} uncer mild weather conditions. Complete loadiaf data on eacr an is found in table 1 . Cutside temperatures raked ketween onc and hor the day frevious to loadiag, making preaeatiaf, of the cers unnecessar, The Tcermo-ilfg units were started imnediately efter loadine was coupleted. All the cars were assembled at dpplevara the day following losutca and the portable heaters installed. The pllots of the Preco seaters were $11:$ and the test train departed at 5:50 p. mo

Discuseion of Results

Although the winter season was nearly over, its severity Rave promise of a good chance for heater service even at tie late date when the test was arranged. Original plans called for the test to be started abrut two weeks earlier but the work on the test cars was not completed when anticipated. The weather en route was unusually mild, avorafing near 300 . see figure 1. Por only a few hours was the temperature below $10{ }^{\circ}$, With a minimum of 60 at Minot. N. D. As a result only one heater was lighted. This was on Car C when the bottor air temperature reached 20.50 at Minot. The Freco heaters renained on pilot thrownit the tranelt period. Fotal elspsed time for the trip to inicago wes 137 mours 55 simutos, of which 70 houre and 30 minutes (51 per cent) was runnine. (mable 2.)

As previously stated, the -nermo-King units were started imiediately after loading. They brought the load to about 340 F . temperatiare in a few nours. Tery uniform temperaturee ware obtained as maj be seen in figure. As the thermostate had not been accarately calibrated it was felt that a temperature not lower than 320 or 33° was desirable for this first trip in order to insure against possible freesing of any part of tre load. However, as the 340 load temperature was closely maintalned orernignt to Hillyard the thermostat was lowered 1° from $3 I^{\circ}$ to 300 and key at that position for the balance of the test. Commodity temperatures were quickiy adjusted to this new setting and were maintained very close to 33° thereafter. During the early part of the test the urits, wher operating, were on the refrigeration cycle and produced a sligntly lower averaze temperature in the top tnan in the hotton of the load. When the coldst weather was encountered and heat was applied, the average tops were sligntly warmer, the maximum syread being 1.60 . Iftile operatife trouble was encountered. Dirt in the fuel lines necessitated reroval and cleaning of a fuel pump, on one occasion. Anctior miror adjustment made was to set up the generator caareirg rate. Engine hour matere irakalled to record the operation of each unit showed a total of 34 to 36 hours operation. However, both units were not turned on all of tre time because of waking the adjustments. Under norial operation, one unit is set to operate about 2° benind the other. In this test because the load conditions were so light, oniy one aschine was operating at any giver tiaia. Betimated total fuel consuned was $1 f-3 / 4$ gallons or approximately $1 / 2$ gallon per hour. A summary of performance during the transit period is contained in table 12.

As stated above, the underfiunf charcoal heater in Car C (overhead bunker) was lighted at Minot when the bottom air temperature at the doorway dropped to 29.50 E . This was in accordance with rules for such heater operation as practiced by the Canadian hailronds. At this time, the averafe bottom comodity temperatures had droped about 30 to 32.10 and 14 hours later had risen to 36.80 (Fig. 4). Fruit in the botton of the load imuediately over tae neatirig pipe inlet (BUNS-R.) showed a slightly more rapld temperature rise than that placed over the outiet which was to be expected as the liquid nad cooled consideratly after circulating completeld around the floor of the car. As shomn in cable 5 , thie iffforence was not freat at any one time. As the aester installatiua wes experiue tal, the thermostatic valve installed wa only rougtily calibrated and will be reflaced with. a groperly eqfineered and calibrated unit. The net excharear. developee by the Burliagton Pefrigerator Express Co Guerated estiefectorijy and giver promise of adequete controi of overheatiog of the liquild in the heating. colle when circulation tremur the car is stopped by actich of the control valve. Commodity temperatures during the test are graphed in Figne 4 . Mris shows a nornal spread between top and botom temeratures for a non-fan car without heat until the heater was lit. Thereafter, the botion terferatures rose urtil there was lest than 10 differerce between the average top and bottom by the end of the test. The maximum temper ature at this point was in the frult directly over the inlet to the plpe. indicating the need for more protection at this polnt. Table 13 summarizes the performance during transit.

In car E the Preco heaters were lit at wenatchee and remained on Filot throughout the test. The curves in figure 6 show a gradual rise in comrodity temperatures excest for a slignt arop wher tie colcest weatrer was encountered on Varch 1. The total heat froin the pilots of both beatera sveraged 1430 B.t.u. per hour, one producing 550 and the other $870 \mathrm{~B} . \mathrm{t}_{\mathrm{o}} \mathrm{u} .1$ hour. Fan action during the time the car war moving resulted in utiform temeratures troughout the load (biz. b). The ereftest difference between the average top and bottom commodity temperatures was less than $2 \cdot$. Heater performence is tabulated in table 14.

No otcer beaters were lit and the commodity temperatures rerianed fairly constant in the other fan cars (B, D, F and G) with a slight drop In each when the coldest weather occurred. (Figures 3. 5, 7, and 8.) As may be noted fron the curves in these figures the forerare top and boton. temeratures were very close. In car $H^{(n o n-f a n) ~ t h e ~ m a x i m u m ~ s p r e a d ~ i n ~}$ temperature was 4.80. There were no dangerously low or high commodity temperatures at any time during the transit period.

Table 11 is a compllation of the air temueratures within the cers B, C and D as obtained from the themal blister, liquidometer, and resistance thermometer readines. Becept for the bottom blister, the positior incicated is the same for all three types of thermometers. The resistance thermometer and liouldometer readines are in ver: close acreenent for all positions in both cars C and D but there is quite a difference between the resistance thermometer anc blister readings in car \mathbb{F}. Wiffertices in the bottom readings may be due in part to the ilfferent positions of eacs it the variation between the two top positions is such that it appes.s that the blister equipment was not giving a true reading.

The fruft in all of the cars was inspected when it was unloaded at destination. No freezing damage or orerheating was reported in any of the cars.

scknowlegrents

This test was made possitie by tne comianies and incividuals listed below whose cooperation and assistance is gratefully acknowledzed.

The comercial loads of apples used were provided by the following shippers:

Cashmere Fruit Growers Union, Cashmere, Wastineton Cascadian Fruit Shippers, Wenatchee, Washington Lake Cholan Fruit Growers, Chelan, Washingeton
Ninth Street Skookum Growers, ienatchee, Haskintion
Wenatchee - Beebe Orchard Co.. Brewster. Washlnkton
Wenatchee - Beebe Orchard Co. Pateroe, Washington
General arrangements for the test were made by Edwin Smith, U. S. Z. A. Wenatchee, Wasningtor.

The arrangements for handing the test cars and business car were made by H. D. McManus, Agent, Western Fruit Express, Fenatcree, wasington.

The business car for the comodation of the test party was furnished by the Great Northern Railway. The G. N. Ky, and tre C. B. \& Q. RR provided the necessary extra handing of this car and tice eight teat cars.

Besides the nembers of the test party the following assisted in tre loading and unloading of the test cars:

Edwin Smitn - U. S. D. Ao, Wenatcnee, Wastington
David Adems - " " "
W. A. Kadspinner, " , New York, NT. Y.
S.A. Cole, A. A. R., Chicago, Illinoie

FGEAgents at Oincinnati and Fhiladelphia
The Thermo-Eicg units were provided, installed and serviced bs
the U. S. Thermo Control Co., Minneapolis.
The test cars equipued with underslung heaters were furnisked by the Burlington Refrigerator Exprese Co. and tre Thermo-King car and other cars by the iestorn Frutt Express Co.

Tre members of the test party were:
A. A. Hamer, Westera Frult \#ress Co., Alexandria, Va.

- E Brifit, Jur. Slent Ind., Solls \& Agricultural bigr. Venstchee, Wasi
*. ii. Redit, " " " " Belteville, no.
i. J. Voegell. Production and Marketing Administration, Wasnington, D. B.
F. K. Jones, ínief mikineer, J. S. Pnermo Control Co., Minneapolis, Sian.
V. \%. Snyder, Research Engineer, U. S. Inermo Cortrol De., "

The followire also acrompanied the test betweer the polnts incicated
E. I. Hudgens, Jr., Ass't. Ferishable Freight Agent, CBdqRa, Breckenridze
to Chicago.
fi. E. Balfrey, Sales Nanager, Luminator Inc., Wilmar to St. Paul

Loading Data

Table No. 1

Car	Amw 67564	B-FGE 40,000	C-BRE 74699	D-BRE 74698	F-FGE 56292	T-TGT 57676	G-FGE 56297	H-70] 57545
Type	Non-fan	Pan	Overhead bunker	Fan	Fan	Pan	Jan	Standard Non-fan
Eeater	Thermo-King	Mitchell Underslung	Mitchell Underslung	Mitchell Underslung	Preco	Simplex Thermo	Standard charcoal	Standard charcoal
Shipper	Wenat chee-	Cascadian	Lake Chelan	Cashmere Fruit	9th St.	Lake Chelan	Lake Chelan	Wenat chee-
	Beobe	Fruit Shippers	Fruit Growers	Growers Union	Skookum	Pruit Growers	Fruit Growers	Beabe
Location	Pateros.	Wenatchee,	Chelan.	Cashmere,	Wenat chee,	Onelan.	Chelan,	Brewster.
	Washington							
Destination	Atlantic	American	Victor Joseph	Atlantic	Joseph IT.	So Albertson	Fred Logan	Atlantlc
	Comm. Coo. Chicago. Ill.	Stores Inc.	New York, No Y.	Comm. Co., Youngstown, Chis	Stein Cincinnat1.	Company Chicago, Ill	Company Philadelphia, B	Comme Co. Chicago, Ill
Routing	GN, CBAQ	GN, CB\&Q, PRR	GN, CB\&Q, Prie	GN, CB\&Q, Trie	GN, CB\&Q, Big 4	GN, CBEQ	GN, CB\&Q, B\&O	GN, CB8Q
Commodity	Apples							
Veriety	Winesap	Winesap	Dolicious	Winesap	Golden Delician Newtown	Delicious	Delicious	Winesap
Type loading	Braced	Braced	Braced	Solid	Solid	Braced	Braced	Sol1d
Brace opening	26"	26"	476	none	nome	261	25"	none
No. Boxes	798	798	798	798	836	798	798	798
Billed Wt.	41,097	41.097	41.097	41.097	43.054	41,097	41,097	41.097
No. Stacks	19	19	22	21	21.	19	19	19
No. Rows	7		7					
No. Layers	6	6	6 and 5	$13-6,6-5$, 2 on end	6end 5, 2 on end	6	6	6-5
Height of load	73-1/2H	74"	74", 61-1/4"	$\begin{aligned} & 74^{\prime \prime}, 61-1 / 2^{\prime \prime} \\ & 59^{\circ} 1 / 2^{\prime \prime} \end{aligned}$	$74^{\circ \prime}$	$74-1 / 2^{11}$	74%	$\begin{aligned} & 74^{\prime \prime}, 67-1 / 2^{\prime \prime} . \\ & 62^{\prime \prime} \end{aligned}$
Space above load	$16^{\prime \prime}$	13-1/2	10", $22-3 / 4{ }^{\prime \prime}$	$\begin{aligned} & 17^{\prime \prime}, 29-1 / 2^{\prime \prime} \\ & 31-1 / 2^{\prime \prime} \end{aligned}$	$13^{\text {H/ }}$	$13^{\prime \prime}$	$13^{\prime \prime}$	$\begin{aligned} & 17-1 / 2^{\prime \prime}, 24 \text { " } \\ & 29-1 / 2^{\prime \prime} \end{aligned}$
Sidewall space	$6-1 / 2$	$4-1 / 2-6^{3}$	$5-1 / 2-7^{\prime \prime}$	$5-6^{n}$	$5-71$	$5-7{ }^{1 \prime}$	$7-1 / 2^{n}$	$7{ }^{\prime \prime}$
Sidewall flues or racks	Racks	Flues	Flues	None	None	None	None	None
Height of floor racks	4-3/4"	$7-1 / 2^{N}$	6"	7-1/4	$7-1 / 2^{\prime \prime}$	$5-1 /{ }^{\prime \prime}$	$7-1 / 2^{\prime \prime}$	$4-1 / 2^{\prime \prime}$
Loading:								$10: 30 \mathrm{~A}_{\mathrm{o}} \mathrm{M}_{0}$
Started	8:55 A. M	$\begin{aligned} & 8: 15 \text { A. Mo } \\ & 9: 45 \text { A. M. } \end{aligned}$	10:10 A. Mo $1: 20 \text { P.M. }$	$\begin{aligned} & 8: 30 A_{0} M_{0} \\ & 10: 10 A_{0} M_{0} \end{aligned}$	$1: 25 \text { P.Mo }$	$7: 30 \mathrm{~A}, \mathrm{M}$	$9: 45 \text { A. Mo }$	$1: 30 \mathrm{Po}_{0} \mathrm{M}_{0}$
Completed	10:15 AOM0	9:4 A.M0	1:20 Po. Mo	10.10 A. .				
Average Temps: Comodity			340	31°	33°	33°	33°	32°
Outside Air	35°	37°	42°	380	430	30°	36°	37°

Table No.?
Y., 3. 2. A. Test No, 40-1

Trip Log

Date	Station	$\begin{gathered} \text { Time } \\ \text { Arrived } \end{gathered}$	Time Doparted	Elapsed Tine	
				Sunning	Standing
Peb. 25	Appleyard Voltage	6:15	$\begin{aligned} & 5: 20 \mathrm{PM} \\ & 7: 10 \end{aligned}$	55	55
	Columbia River	7:20	7:45	10	25
	Trinidad	8:10	$8: 25$	25	15
	Quincy	9:15	9:45	50	30
	Adrian	10:40	12:00M	55	1-20
	Wilson Creek	12:40AN	2:50Am	40	2-10
	Lamona	4: 20	4:35	1-30	15
	Edwall	5:30	6:40	1-55	10
	Hillyard	8:15	12:402m	1-35	4-25
	Camden	1:25PM	1:45	45	20
	Scotia	2:10	2:45	25	35
	Sand Point	3:55	4:20	1-10	25
	Colbura	4:45	5:10	25	25
	Bonners Ferry	5:5 PST	6:55 MST	45	60
	Troy	$7: 55$	$9: 45$	60	
$\begin{array}{r} 26-7 \\ 27 \end{array}$	Ripley	10:50РM	12:30AM	1-05	1-40
	Rexford	2:30in	2:40	2-00	10
	Stryker	4:10	4:20	1-30	10
	Whitefish	5:15	12:25PM	55	7-10
	Brent	1:30	1:35	45	25
	Beltoid	2:10	2:30	35	20
	Essex	3:55	4:10	1-25	15
	Summit	5:20	6:15	1-10	55
	Blackioot	7:55	8:25	1-40	317
	Shelby	9:50	10:05	1-25	15
	Buelow	11:35	11:50	1-30	15
28	Havre	12:55am	7:001	1-05	$6-05$
	Zurich	8:15	8:25	1-15	10
	Savoy	9:00	9:20	35	20
	Bowdoin	10:40	11:10	1-20	30
	Faisley	12:30PM	12:40PM	1-20	10
	Glabzow	12:55	1:20	15	25
	Prazer	2:15	2:30	55	
	Folf Point	3:00	3:40	30	40
	Lanark	5:25	5:50	1-45	25
		MST	OST		
March.	Williston	7:308	2:30AM	1-40	
	Wheelock	3:35	4:35	1-05	60
	Ray	4:50	5:00	15	10
	White Bartb	5:50	7:10	50	1-20
	Stanley	8:25	9:25	1-15	60
	Des Lacs	10:30	10:40	1-05	10

3-1	Minot	11:00AM	12:45PM	20	1.45.
	Genoa	1:15PM	1:30	30	15
	Venendrye	1:50	2:10	20	20
	Aylmer	2:55	3:15	45	20
	Heimdal	4:00	4:20	45	20
	New Rockford	4:50	6:15	30	1-25
	Juanita	6:55	7:10	40	15
	Hannaford	7:55	8:15	45	20
	Nolan	9:15	9:30	1-00	15
	Eindred	11:15	11:25	1-45	10
3-2	Wahpotan Jct.	12:4CAM	12:50AM	1-15	10
	Breckenridge	1:10	3:45	20	2-35
	Morris	5:50	6:00	2-05	10
	Wilmar	8:15	12:00N	2-15	3-45
	Dassel	1:35p	2:15	1-35	40
	Lyndale Jct.	3:45?	-	1-70	
	Waytong Bluff	-	9:30PM		5-45
3-3	N. LaCrose	1:30A	2:15A	4-00	45
	Savanna	5:30	7:45	3-15	2-15
	haterman	1r:35	10:45	2-40	0
		11:00	11:20	15	20
	Congrese Park	12:30	1:00	1-10	30
	Morton Park	1:15		15	
			Totals	70-30	$67-25$

0．62	$8{ }^{\circ} \mathrm{bk}$	$0 \cdot 82$	$0 \cdot 07$	O6\＆	G6\％	068	08%	562	G6\％	G6\％	007	－	007	007	58%	8 82	WJOE：T	ε	－ Md
\＆．8\％	0．0\％	0．82	$s^{\circ} \mathrm{O}$	082	582	582	08\＆	98%	G8\＆	G6\％	068	－	06\％	G6\％	08§	O\＆	WVCE： 9	ε	bưbab？
H．LE	$\varepsilon \cdot 8 \varepsilon$	O．LE	0．6z	OLE	GLE．	SLE	$G L \varepsilon$	GLE	08\％	O6\＆	08\＆	－	08\＆	085	G9\％	O\＆	WdOE：L	$己$	－Itg stozא日
H．LE	$7 \cdot 8 反$	O．L 2	C． 68	OLE	GLE	GLE	$G L E$	GLE	G8\％	06ε	08£	－	082	082	O9\＆	82	WFOE：8	己	دвщTI下．
$G^{\circ} \mathrm{LE}$	$\pi \cdot 82$	$G \cdot L \varepsilon$	0．62	GLE	GLE	$\zeta L E$	GLE	$G L E$	58%	062	08£	－	08£	08\＆	G9\％	ट2	WVOE：τ	己	－Jptruexさうごy
8．92	T．8\＆	G．9k	G＊＊	G9\％	OLE	OL2	OLE	G9\％	O8\＆	G82	08\＆	－	08\＆	G8\＆	OLE	12	WCOE：G	τ	pxojx
$6 \cdot 55$	O．L 2	$G \cdot G 2$	G^{9} LE	O9£	GGE	OgE	G9\％	$\zeta \zeta \varepsilon$	G9\％	GLE	OLE	－	OLE	09\％	$5 \pi / 2$	Hट	$\begin{gathered} \text { WHOE: TI } \\ \text { USO } \end{gathered}$	$\underset{\text { - }}{\substack{\text { EWW }}}$	7outh
H．82	$\tau \cdot 6 \varepsilon$	0．8反	$\zeta \cdot 6 \varepsilon$	G8\＆	G8£	58\％	08乏	58%	068	G6\％	06ε	－	06ε	G8\％	$G L \varepsilon$	81	Wd00：8	82	UO7s ITIfA
T－8反	c． 68	0．8反	$5 \cdot 6 \Sigma$	08\＆	G8\＆	08\％	08\＆	08反	588	G6E	O6\＆	－	06\％	G6E	GLE	82	WdOE：G	82	yseuet
$9^{\circ} \mathrm{LE}$	$5 \cdot 8 \varepsilon$	$G^{\circ} \mathrm{LE}$	$\zeta \cdot 6 \Sigma$	08\＆	GLE	SLE	$\zeta L \mathcal{L}$	$\zeta L E$	488	G6\％	08\＆	－	O8\％	082	G9\％	8 I	WTOO：IT	82	U̧OPMOg
$1 \cdot 8 \varepsilon$	$\pi^{\circ} 68$	$0 \cdot 8 \varepsilon$	$5 \cdot 62$	06\％	O6\＆	G8\％	08\＆	068	568	G6\％	G6\％	－	O6\％	068	$G L \varepsilon$	81	WYOE： 1	82	－Aneh
$5 \cdot 8 \%$	$\varepsilon \cdot 6 z$	$4^{4} 2 \underline{1}$	$0^{\circ} 07$	G8\％	G65	58%	$G L E$	G8\％	G8\％	G6E	OOT	－	062	007	08\％	$5 ¢$	Wd00：8	Lic	700JY08 TE
6． 25	$0 \cdot 0$	$0^{\circ} \mathrm{LE}$	$\zeta 0$ ¢	08\＆	588	588	OLE	GLE	O6\％	G6E	06\％	－	582	08\％	O9\％	$\zeta \Sigma$	N00： 21	12	
78\％	T． 62	C＊LE	$\zeta{ }^{\text {cóz }}$	568	O6\＆	08\＆	OLE	S8\％	G6\％	S6E	O68	－	58%	082	GLE	91	WYOE：G	$L 2$	प8150子Tum
I br	$c^{\circ} \mathrm{Om}$	$0^{\circ} \mathrm{Lz}$	$0^{\circ} \mathrm{I}$ \％	007	－	OOt	OLE	G6乏	Sor	OT\％	007	O6£	G68	00\％	G6E	92	$\begin{gathered} \text { WCOO: IT } \\ \text { ISW } \end{gathered}$	92	
$\varepsilon \cdot 02$	$9^{\circ} 0 \pi$	O．LE	$S \cdot T$	007	007	007	OLE	G6\％	50%	$G T \pi$	507	－	007	$0 ¢ \pi$	G6E	$\Sigma \pi$	Wd．c： 7	92	quiod purs
$\zeta \cdot L 2$	8．82	0．9\％	$0^{\circ} \mathrm{O} 7$	08\％	08\＆	08£	09\％	SLE	G8反	G6E	08£	007	08\％	08\＆	082	8\％	WTOE：8	92	Fseftill
$\zeta \cdot 8 \Sigma$	$8^{\circ} 62$	C．Lk	$c^{\cdot 0} 0+$	G8\＆	06ε	06\＆	OLE	06\＆	G6\％	007	00\％	S6\％	007	007	－	π	h＇00：6	G2	Souf ne
$0 \cdot 9 \varepsilon$	C．6反	$\xi \cdot 7 \xi$	$5 \cdot 6 \varepsilon$	O9反	OLE	G9£		O9\％	068	06£	06乏	568	G6\＆	0 Ort	－	2S	Wd 00：反	G2	puadatdut
$8^{\circ} \mathrm{LE}$	$9^{\circ} 82$	$0 \cdot 98$	$\zeta \cdot 6 \varepsilon$	08\＆	GLE	08£	09乏	G6E	G8乏	068	08乏	08\％	G6E	O2t	－	62	WYOO：IT	72	＂
								＊${ }^{\circ} \mathrm{V}$	$5 \pi: 6-$	$G T: 8$	peprot							$\pi ट$	
																	USd	－ 98 星	
				Y	\＆	H	H	H	प	¢		H	H	dow	10 g	－ 10			
- نillog		－N IW	＊X 7 ，	SN9G	SINCO	SNOT	T008	SNGG	TDGU	70 CL	T0世山	プก゙い	T0¢	${ }^{1}$	180 व ャッ VT	WSO	－びひ	－ \boldsymbol{q}^{81}	401782S

\sqrt{r}
Resistance thermometers placed adjacent to liquidometer hulbs.

T2．	8．91	$0 \cdot \underline{5}$	$5 \cdot 8$	2）	$0 \chi^{2}$	OE\＆	G^{2}	GSE	09\％	OLE	582	$08 ¢$	555	018		85	W¢OÉ：τ	ξ	
6.22	$8 \cdot 92$	¢0 ck	$0.8{ }^{1}$	G\％	G2¢	G2¢	OSE	09ε	09 ¢	G9\％	08ε	$08{ }^{\text {O }}$	GSE	G98	Sid	ce	wyos：9	ε	maubas
$9^{\circ} \cdot \underline{ }$	［ ¢ \％	¢ 0 ¢反	$0 \cdot 2$	0こを	¢T反	GT反	Gq̌	¢tik	OS\＆	¢9\％	OLE	$0 \angle \mathrm{E}$	OG\＆	ĢE	O2：	0ε	W¢OE： 1	2	－jta suozsea
$\bigcirc \cdot \underline{\circ}$	L＇gi	－¢	0.88	$00^{2} \varepsilon$	OTE	¢TE	Otí	OS\＆	Og\％	598	08\＆	GLE	GGE	GG8	らTE	82	WW02： 8	2	
$0^{\circ} \mathrm{t}$	L｀yk	$5 \cdot 8$	0.88	0こ反	G0\％	Sof	O¢反	$5 ¢ \Sigma$	O9\％	598	08ε	GLE	¢¢¢	¢S¢	OT\＆	22	14YOz：T	2	
\％ 3		¢＂）	¢．$<$ ¢	02¢	G0¢	OT\＆	Oサ反	OHE	092	G9\％	GLE	GLE	GSE	08ε	G0¢	12	พ¢02́： 5	τ	
g＊\circ	¢．gと	$0 \cdot$ İ	¢． $2 ¢$	Gこと	Oť	OT\＆	¢¢¢	On¢	O98	G98	021	GLE	GSE	G£	OTE	72	WHOE：IT LSO	- rew	707\％
2•7\％	$9 \cdot 2 \varepsilon$	$0 \cdot 1$.	5.88	Onz	O\＆¢	O¢E	OS¢	Oy¢	OLE	GLE	588	G85	G9\％	OLE	O\＆¢	81	W00： 8	82	O78！timm
I ${ }^{1}$		$0{ }^{\circ} 2$	$4^{\text {c }} 8$	Ot反	0¢¢	0 O反	OS¢	¢SE	492	02 E	581	582	¢9\％	SLE	Oż	82	Wdoz： 5	83	
9.72	0．z 2	¢．2	$0 \cdot 5$	Oni	42ε	0 ¢	Gsk	092	08%	08%	068	592	G9\％	GS\＆	C ¢ ¢	8 T	\＄400：II	83	агрраоя
［9\％	$\pi \cdot 8$	$\cup^{\prime} \pi$	¢0\％	UG2	OM，	Ot｜	GSk	OL2	08\＆	08%	Soz	068	SLE	GLE	Suk	81	WYO乏：τ	82	
$6 \cdot 1$	$5 \cdot 8 \varepsilon$	（）${ }^{\text {\％}}$	$5 \cdot 68$.	$5{ }^{5 \pi}$	On¢	Ott	GG\％	498	582	582	G68	588	GLE	00	G¢E	$5 ¢$	Wส00： 8	12	
8 － 7	T「2	$0 \cdot 72$	$0 \cdot 6 \varepsilon$	OSz	OHE	OHE	OG¢	Og\％	598	Q 2	SLE	08%	G9\％	098	S¢E	S\＆	N00：2t	12	
โ＇y	7 \％ 2	¢ $)^{2}$	¢． 52	Gy¢	G58	GS\＆	$¢_{5 ¢}$	GLE	082	0¢E	G6\％	06ε	G12	S9§	OG反	9 t	WYO： 5	12	
$0 \cdot y z$	6.82	$0 \cdot 98$	$0 \cdot \%$	09ε	09\％	OS\＆	GSE	SLE	08ε	58%	00\％	G6¢	58%	SO\％	GS§	yc	$\begin{aligned} & \text { Wdoo: } \mathrm{TI} \\ & \mathrm{LSW} \end{aligned}$	92	Sotur
$8 \cdot 5 ¢$	c ${ }^{\text {br }}$	Ofy	0．3\％	09 E	OGE	OSE	Scis	¢L2	06ε	582	0nt	004	¢3\％	Gqn	OG\｛	\＆r	Wสט0：\％	92	friod pues
¢．GE	L． 2ε	$0 \cdot 12$		GSq．	OS¢	OGz	OGE	OLk	$0<2$	GLE	G9£	$58 \&$	028	OLE		81	intor：8	92	рлв¢тtim
E．GE	$\varepsilon 82$	$5{ }_{5}$	¢ n	S5i	OGE	OGE	$0 ¢ 5$	¢8\％	08%	08%	562	062	UL2	的何	Gmi．	${ }^{1}$	WdOO： 6	Ge	Sourn3
$0 \cdot 92$	¢ 0	¢）${ }^{\text {c }}$	y．L_{2}	OS2	¢TE	GTi¢	¢Tk	¢9\％	G9z	G9\％	GLz	らLE	4ye	Ott	Onk	TS	WaOO：反	Ge	pabeatdiy
$0 \cdot 1$	e＇y	y 78	U＂y	$4{ }^{\text {¢ }}$	$5{ }^{5}$	勺Tl	US\＆	Oy	Uy＇	4π.	052	092		¢6\％	Og\％	It	Wdoz：	H2	
						\cdots	O2： T		OE：01	paprot								\＃	хวүвмөлฮ
																	ISd	90］	
				${ }^{\text {d }}$	¢	H	H	н	4	y			H	${ }^{1}{ }_{\text {O }}$	709	．${ }^{\circ}$			
	$\begin{gathered} \text { SdOU } \\ \cdot \pi \Delta V \end{gathered}$	IIW	x NO	Sษ¢g	SNOE	SNTE		5\9\％	TO\＆	2084	T0¢4	T024	20．			ISO	${ }^{\text {a }}$	${ }^{2784}$	以01787S

Table Mo. 12
U. S. D. A. Test No. Lig-1

Heater Inspection Data

Unit started at loading time moraing of February 24 at Pateros.
Fuel pump removed on unit A and adjustments made on unit B at Pateros.
Thermostat setting 31° at start of test. Changed to 30° at Hillyard.
3u differential between thermostat bulb temperature (return air)
and comodity resulted in an average of 33° commodity temperature.
Quincy, 符sinington $2 / 25$ - Fuel pump on unit A replaced.
Sand Point, Idaho 2/26 - Fan belt replaced due to damage resulting from
previous crange of fuel pump. Original fivel pump cleaned and replsced
in unit A at this location. Voltage regulator adjusted.
Morton Fark, Chicago - Both units shut off upon arrival (1:15p. w.) and fuel tanks refilled to determine fuel consumption.

Un1t $A-7-3 / 4$ gals. 16 to 17 hours operation (fromengine bour metor)
Unit B-9gals. 18 to 19 " " " \# \# " Total-16-3/4 gallons, $34-36$ hours operation

Units were operated at approximetely 20 differential of theringetat ettinge.

$$
\frac{\text { Table No. } 13}{\text { U. D. A. Test. No. 49-1 }}
$$

Laminator-
Thermostat Setting Approx. 360
Heater Mitchel
Test Code No. C
Car No. BREX 74609 Overhead Bunker Car Drains Plugged Placement center car under floor

Note: $D=$ Dark
$B=$ burning

1) Resistance thermometer bulbs placed adjacent to top and bottom liquidometer positions.

Table No. 14
U. S. D. A. Test No. 42-1

Heater Inspection Data

Test Code No. I
Theracitat Setting $321 / 20$.
Heater Preco
Car No. Pure 5E292
Fans On Drains Open ilagonally Placement inch Find

[^0]: 1)

 Comprehensive Report on Heater Tests issued July, 1948 (AAR-USDA Tests 22, 23, 24, 25, 26 and 27)

